
DISSOLUTION OF A POLYDISPERSE SYSTEM
OF PARTICLES SHAPED LIKE A PARALLELEPIPED
IN A NONFLOWING SYSTEM

A. I. Moshinskii UDC 539.21:66.061

The process of mass dissolution has been investigated on the basis of the crystal-size distribution function in
the case where the crystal faces traveled in accordance with the power law and the dissolution proceeded in
a periodic regime. It has been proposed to reduce the dissolution problem to a system of equations that could
be solved analytically in certain cases that are of interest in practice. The notion of dissolution efficiency has
been introduced.

Processes of dissolution are abundant in nature and have found wide use in industry. They are similar in
physical essence to crystallization. Dissolution formally differs from crystallization in the sign of the velocity of travel
of crystal faces. Both crystallization and dissolution, as mass-exchange processes, occur with a number of physico-
chemical effects that can be revealed experimentally but are very difficult to theoretically describe with the use of ex-
isting models of these processes. For example, it is known, that crystals can break or stick together in the process of
growth (dissolution); their faces can travel with different velocities, with the result that some of them disappear; the
rates of transformation of crystal faces can fluctuate, etc. [1–3]. Because of this, it is difficult to theoretically describe
the effects observed in experiments; moreover, there is not a sufficient number of mathematical models of the above-
mentioned processes and the calculations by the available equations are very complex. As a rule, only a small number
of factors influencing the course of these process are taken into account in calculations, and researchers are forced to
introduce simplifying assumptions. For example, the crystal is traditionally characterized by a single parameter — the
equivalent radius of the sphere equal to the crystal in volume. At the same time, any crystals taken from an apparatus
(or loaded into it) clearly demonstrate the discrepancy between this representation and the experimental facts. Further-
more, every so often the habit of a crystal changes in the process of growth (dissolution). Up to now, attempts to
theoretically describe the transformation of a crystal whose shape differs from a sphere and the changes in its habit in
the process of mass crystallization have been episodical in character [4–7] as compared to the enormous number of
works devoted to this theme. The author has no information on works in which the mass dissolution of crystals of
nonspherical shape was analyzed.

Below, we will consider the dissolution of crystals shaped as a parallelepiped in the case where the crystal
faces travel in accordance with the power (with respect to the dimension parameters) law. This circumstance brings the
theory closer to the real processes of dissolution of particles occurring in practice; however, the description of the phe-
nomenon becomes more complex in this case. First and foremost, in the case where a crystal has a complex shape,
the dimensionality of the problem increases, since an individual law of velocity of travel should be introduced for each
crystal face. Analysis of the mass dissolution of crystals shaped as a parallelepiped is evidently the most simple, ex-
cept for that of spherical crystals.

Formulation of the Problem. The process is modeled on the basis of the crystal-size distribution density
function (CSDDF) — F(X1, X2, X3, t), where the parameters X1, X2, and X3 determine the size of a crystal in the di-
rection of the corresponding axis Xi 2 [0, ∞) (i = 1–3). This function multiplied by the "volume" element dX1dX2dX3
gives the number of crystals with sizes falling in the ranges (X1, X1 + dX1), (X2, X2 + dX2), and (X3, X3 + dX3) at small
values of dXi (i = 1–3). The approach proposed gives an exhaustive description of the process since it determines the
granulometric composition of a disperse system. Let us assume that each crystal face travels in accordance with the
power law relative to the corresponding dimension (coordinate) with its own parameters
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dXi
 ⁄ dt = Vi (C

∗
 − C) Xi

1−αi ,   i = 1 − 3 ,   C
∗
 > C , (1)

where C∗  is the equilibrium (at a given, constant temperature) concentration of the object substance (saturation concen-
tration). The functions Vi of the undersaturation C∗ – C are usually almost linear, and Vi(0) = 0 (i = 1–3). In the case
of dissolution of crystals, the values of these functions are negative. If the functions Vi(C

∗ – C) = Ui(C
∗ – C) are linear,

the multipliers Ui (i = 1–3) are functions of definite physicochemical constants, examples of which (functions) for
spherical particles are given, in particular, in [8–10]. The functional dependences of the rate of dissolution of particles
with a more complex shape have an analogous form. Thus, the dissolution of crystals depends on the undersaturation
C∗ – C of the solution (C < C∗ ), considered as the main variable, and on the physicochemical characteristics (density,
viscosity, etc., accounted for by the quantities Ui), considered as parameters. Note that formula (1) defines the rate of
change, for example, in the first "coordinate" X1, whereas the corresponding face X2X3 travels with a two times lower
velocity since a parallelepiped has two opposite faces transformed in accordance with the change in X1.

It is usually assumed that the functional dependences dXi /dt have the same form in the case of growth of par-
ticles and in the case of their dissolution. The determination of the velocity of travel of crystal faces represents an in-
dependent problem, the numerous aspects of which are topical at present [1, 11, 12]. The point is that there are
several justified theories on the mechanism of growth (dissolution) of crystals, for example, "thermodynamic theories,"
"dislocation theories," and others [1, 11–13]. It is also known [11, 12] that impurities markedly influence the velocity
of travel of a crystal face and certain substances (impurities) act differently on different faces of one and the same
crystal. Therefore, in practice, in deciding on the law of the velocity of travel of crystal faces, it is necessary to de-
termine the mechanism of growth (dissolution) of crystals that corresponds better to experimental data and then select
the coefficients of theoretical models such that they are in agreement with experimental data on condition that the dif-
ficultly controlled "nonidealities" of the process are taken into account. Both the theory and experiment [12] give dif-
ferent values of the rate of growth of different faces of a crystal, and these differences can be very large in certain
cases. For example, in [14] it has been established that the rates of growth of two types of faces of calcium sulfate
crystals (gypsum) differ approximately by a factor of 102 and analytical dependences have been proposed for their de-
termination.

Let us now consider the influence of the sizes of crystals on the rate of their transformation. In the "single-
parameter" case of particles shaped as a sphere, three values of the parameter α have a practical value and can be
theoretically substantiated. This parameter determines the character of the dissolution process that proceeds in a kinetic
regime at α = 1, in a diffusion regime at α = 2, and, at α = 3/2, in one of the intermediate regimes realized in ac-
cordance with the power law in flow-through apparatus at Reynolds numbers higher than 500 [2, 3, 8, 9]. Thus, the
most interesting, from the practical standpoint, regimes of dissolution of particles are realized at α 2 [1, 2] and rela-
tion (1) involves the greater part of dependences used in practice for description of the dissolution of particles in an
undersaturated solution [3, 8, 9, 15]. For particles having a more complex shape (for example, particles shaped as a
parallelepiped), similar dependences of the rate of their dissolution on the parameters determining particle size are ex-
pected. The particle sizes play no part in the kinetic regime of dissolution that is realized at very large Reynolds num-
bers. In the diffusion regime (α = 2), a plane face grows with time by the same law x D t1

 ⁄ 2 as a spherical one,
r D t1

 ⁄ 2. On differentiation, we have dx/dt D 1/x and dr/dt D 1/r. It is probable that the regime α = 3/2 for spherical
particles is analogous to this regime for particles shaped as a parallelepiped in the same range of Reynolds numbers.
In any event, the power law used in [16, 17] for the rate of growth of spherical particles depending on their sizes in
the process of crystallization can be true for dissolution of particles having a complex shape.

We will also assume that the regime of ideal mixing of a suspension is realized in the system; therefore, the
CSDDF and the concentration of the object substance in a solution will insignificantly depend on the space coordi-
nates. The basic equations will be constructed without regard for fluctuations of the rate of dissolution of crystals and
the influence of the aggregation and cleavage of crystals on the process. The travel of crystal faces will be considered
as the main factor influencing the CSDDF, so that the other above-mentioned factors and the factors indicated in [1–3]
that determine the form of the equation for the CSDDF will be neglected.

We derive an equation for the crystal-size distribution density function F(X1, X2, X3, t) representing the num-
ber of particles ∆N with sizes ∆X1, ∆X2, and ∆X3 in an apparatus (i.e., ∆N = F(X1, X2, X3, t)∆X1∆X2∆X3 at small val-
ues of ∆Xi (i = 1–3)). Let us write the material balance on the object substance in the solid phase. The change in the
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number of particles with sizes (X1, X1 + ∆X1), (X2, X2 + ∆X2), and (X3, X3 + ∆X3) for a small time interval ∆t is de-
scribed with an accuracy of up to small values of the first order with respect to ∆Xi (i = 1–3) and ∆t as
(∂F ⁄ ∂t)∆X1∆X2∆X3∆t. This change is caused, first of all, by the appearance of new particles with sizes larger than
Xi + ∆Xi (i = 1–3) due to the dissolution (the decrease in the size (∂Xi

 ⁄ ∂t)∆t (i = 1–3)). For the first "coordinate," we
have (dX1/dt)∆tF(X1 + ∆X1, X2, X3, t)∆X2∆X3. Similar relations can be written for the other "coordinates." Second, N
changes due to the disappearance of particles with sizes (Xi, Xi + ∆Xi) (i = 1–3) because of the decrease in the sizes
of particles as a result of their dissolution. For example, for the X1 "coordinate" this change is described as
(∆X1/dt)∆tF(X1, X2, X3, t)∆X2∆X3. Similar relations can be written for the other Xi.

Using Eq. (1), we write the balance on the number of crystals in the following form:

∂F

∂t
 ∆X1∆X2∆X3∆t + 




V1 (C∗

 − C) [(X1 + ∆X1)1−α1 F (X1 + ∆X1, X2, X3, t) −

− X1
1−α1F (X1, X2, X3, t)] ∆X2∆X3 + V2 (C∗

 − C) [(X2 + ∆X2)1−α2 ×

× F (X1, X2 + ∆X2, X3, t) − X2
1−α2F (X1, X2, X3, t)] ∆X1∆X3 + V3 (C∗

 − C) ×

× [(X3 + ∆X3)1−α3F (X1, X2, X3 + ∆X3, t) − X3
1−α3F (X1, X2, X3, t)] ∆X1∆X3




 ∆t = 0 ,

Having divided this equality by ∆X1∆X2∆X3∆t, we obtain, in the limit ∆Xi → 0 (i = 1–3), the equation

∂F

∂t
 +  ∑ 

i=1

3

 






Vi (C

∗
 − C)








∂ (FXi
1−αi)

∂Xi














 = 0 . (2)

Equation (2) is inadequate to describe the dissolution. It is necessary to additionally write the balance on the
object substance in a solution, i.e., the equation of evolution in the case of undersaturation. Let us consider the transition
of the object substance into solution as a result of the dissolution of crystals in the case where the change in the mass
of the substance for the time ∆t (at small ∆t) is Q∆tdC/dt everywhere over the volume of the apparatus. For a crystal
with sizes X1, X2, X3 and a volume X1X2X3, the change in the volume for the time ∆t is (dX1/dt)X2X3 =
Vi(C

∗  − C)X2X3X1
1−α1 in the case where only the increment of the parameter X1 is taken into account, i.e., the "area" of

the X2X3 face is multiplied by the rate of change in the X1 "coordinate" normal to it. The increment of the volume,
which is due to the change in the parameters X2 and X3, is estimated in a similar way. Multiplication of the sum of
the indicated increments of the crystal volume by the solid-phase density gives the mass of the substance, and additional
division by the volume of the apparatus Q gives its concentration. Since, in certain cases, it is appropriate to consider
particles with a shape differing from a parallelepiped (but "three-parametric), we introduce the shape factor β to take
into account this circumstance. The shape factor will represent the ratio between the density of the particles (multiplier)
and the volume of the apparatus (divisor). The main aim of the shape factor is to correctly take into account the mass
transition of the substance from crystals into solution. To take into account the effect of all crystals, it is necessary to
use the CSDDF, having summed (integrated) the effect of a single crystal over the effects of all crystals with sizes
falling in the range studied. Thus, the increment of the mass that is due to the dissolution of particles is

 β∆t 

V1 ∫ 

W

X2X3X1
1−α1FdW + V2 ∫ 

W

X1X3X2
1−α2FdW + V3 ∫ 

W

X1X2X3
1−α3FdW



 .

Having related this quantity to the rate of change in the concentration of the object substance in a solution ∆tdC/dt
and having performed division by ∆t, we obtain the desired equation

dC
dt

 + β 

V1 ∫ 

W

X2X3X1
1−α1FdW + V2 ∫ 

W

X1X3X2
1−α2FdW + V3 ∫ 

W

X1X2X3
1−α3FdW



 = 0 , (3)
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defining the dependence of the CSDDF on the undersaturation of the solution. Here, dW = dX1dX2dX3 and the lower
limit of integration W in (3) means that integration is done over all the coordinates Xi (i = 1–3) from zero to infinity.
The factor β characterizes the shape of a crystal or, more precisely, the relation between the crystal volume and the
product of its sizes X1, X2, X3. We will not concretize this coefficient since it can be used for investigating the disso-
lution of crystals having a more complex shape, for example, the shape of an oblique prism, etc. A single important
requirement is that the volume of a crystal is to be expressed in terms of its sizes in the form of the function
X1X2X3 with any multiplier and its faces are not to disappear. Examples of determination of the factor β are given, for
example, in [17, 18].

Equations (2) and (3) should be supplemented with the initial and boundary conditions. The initial conditions

F t=0 = F0 (X1, X2, X3) ,   C t=0 = C0 ,   C
∗
 > C0

(4)

determine, respectively, the granulometric composition and concentration (undersaturation) of the solution at the onset
of the process. The boundary conditions should provide a fairly rapid decrease in the CSDDF at X1, X2, and X3 → ∞.
In actual practice the CSDDF becomes zero once the increasing Xi intersects any surface in the first quadrant of the
coordinate system X1, X2, X3. This is also true for the function F0. As for the boundary conditions at Xi = 0 (i = 1–3),
they are not essential for problems of the mass dissolution (unlike the related problems of the mass crystallization
from solutions). This is explained by the fact that, in the problems on the dissolution, the sign of the rate of growth
(dissolution) is such that the characteristics of Eq. (2) [19] pass through the planes X1 = 0, X2 = 0, and X3 = 0 (in
the general case, a concrete characteristic intersects only one of these planes). Therefore, we cannot formulate definite
conditions for the given planes Xi = 0 (i = 1–3) that would bound the region of change in the parameters Xi [19].
Actually, the characteristics of (2) represent solutions of the system of equations (1) and, since Vi < 0 (i = 1–3), all the
coordinates Xi decrease in value. Consequently, the characteristic lines tend to go out from the region X1 > 0, X2 > 0,
X3 > 0, where the physical meaning of the initial condition F0 is determined.

The absence of boundary conditions for the planes Xi = 0 (i = 1–3) in problems on the dissolution introduces
significant corrections to the analysis of the problem as compared to the problem on the mass crystallization, even
though in the basic equations only the signs of the rates of increase in the sizes change.

Analysis of the Problem. We introduce the moment characteristics of any function ψ by the formula

Mijk (ψ) = ∫ 
W

X1
i
X2

j
X3

k
 ψ(X1, X2, X3, t) dW ,

where the time argument of the function ψ can be absent under the integral or be replaced by other parameters. The
moments of the CSDDF reflect important characteristics of a collection of crystals. For example, the moment N =
M000 determines the number of crystals and the moment M100 determines the average size of a crystal in the direction
of the X1 axis (the moments M010 and M001 have an analogous meaning). The moments M110, M011, and M101 deter-
mine the average areas of the face surfaces perpendicular to the axes specified by subscript 0. The total volume of the
crystals is determined by the moment M111. In certain heat-mass-exchange processes, of importance is the specific sur-
face of particles, which represents an integral characteristic of their collection. It is easy to verify that, in the case of
a crystal shaped as a parallelepiped, its specific surface S∗  is determined by the formula [20]

S∗  = 2 [M011 + M101 + M110] ⁄ M111 ,

representing the ratio between the total area of the parallelepiped (crystal) faces and the total volume of the crystal.
A definite integral equality follows from Eqs. (2) and (3). Multiplying Eq. (2) by βX1X2X3 and integrating the

expression obtained over all Xi (i = 1–3) from 0 to ∞, we obtain, with the use of (3), the following relation:

d [C + βM111 (F)] ⁄ dt = 0 . (5)

This relation defines the balance on the total amount of the substance in a solution and in solid particles. Equation (5)
is easily solved with the use of the initial conditions (4) in the following form:
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C + βM111 (F) = q = const = C0 + βM111 (F0) , (6)

Dependence (6) can be used instead of Eq. (3). Thus, Eqs. (2) and (6) make it possible to determine the un-
known functions F and C in the case where initial condition (4) is used for the function F (the initial condition for
the function C has already been used in deriving expression (6) and will not be used hereinafter).

In solving problem (2), (6), and (4) it makes sense, instead of F, to determine the new function g defined by
the equality

F (X1, X2, X3, t) = g (ζ1, ζ2, ζ3, t)  ∏ 

j=1

3

 Xj
αj−1

 ,   ζj = Xj
αj ⁄ αj . (7)

The moments of the function F expressed in terms of the variables Xj are related to the moments of the function g by
the easily verified relation

Mijk (F) = α1
i ⁄ α1α2

j ⁄ α2α3
k ⁄ α3Mi ⁄ α1,j ⁄ α2,k ⁄ α3

 (g) . (8)

Having done the necessary calculations, we obtain, instead of (2), the following equation:

∂g

∂t
 +  ∑ 

i=1

3

 



Vi (C

∗
 − C) 

∂g

∂ζi




 = 0 . (9)

The initial condition for the CSDDF in the new coordinates has the form

g t=0
 = g0 (ζ1, ζ2, ζ3) = F0 (X1, X2, X3)  ∏ 

j=1

3

 Xj
1−αj ,   Xj = (αjζj)

1 ⁄ αj . (10)

Now only the function g can be considered as unknown since the undersaturation is expressed in its terms with the
use of expressions (6) and (8) at i = j = k = 1. This makes the problem on the determination of the function g non-
linear, which presents the main difficulties for its analysis and analytical solution. However, under certain conditions
realized in practice, this problem can be solved in quadratures. To do this, it is convenient to describe the problem by
a system of ordinary differential equations supplemented with an integral equality.

We will assume for a while that the dependence C = C(t) is known. In such an event, the functions Vi(C) are
also known. In accordance with the equations

dλj
 ⁄ dt = − Vj (C) ,   λj (0) = 0     (j = 1 − 3) , (11)

we introduce the new functions λj(t) (j = 1–3). For brevity, in relations (11) and sometimes in other relations, where
this will not cause any misunderstanding, we will write the argument C instead of (C∗  − C) under the sign of the func-
tion Vi.

We will solve the problem with the use of the method of characteristics [19]. It is easy to verify by direct
calculation with the use of relations (10) and (11) that Eq. (9) has the following solution:

g = g0 [ζ1 + λ1 (t), ζ2 + λ2 (t) , ζ3 + λ3 (t)] . (12)

Now, to close the problem (the function C(t) is not known in fact) we will use dependences (6) and (8). Let us write
a common expression for the moments of the function g that, with needed values of the indices, will lead to a desired
relation. It can easily be obtained from formula (12):

Mijk (g) = ∫ 

W

ζ1
i ζ2

j ζ3
k
 g0 [ζ1 + λ1 (t), ζ2 + λ2 (t) , ζ3 + λ3 (t)] dζ1dζ2dζ3 . (13)
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Thus, the integral expression supplementing (11) and representing, in combination with it, a complete system of equa-
tions for determining the unknown functions C and λj (j = 1–3) has the form

C + β∗ M1 ⁄ α1,1 ⁄ α2,1
 ⁄ α3

 (g) = q ,   β∗  = β ∏ 

j=1

3

αj
1 ⁄ αj . (14)

In the general case, the four equations of (11) and (14) can easily be reduced to three equations, on solution
of which one quadrature (instead of the fourth equation) remains to be done. Actually, having divided expressions (11)
at j = 2 and j = 3 by the equation at j = 1, we obtain

dλ2

dλ1
 = 

V2 (C)
V1 (C)

 ,   
dλ3

dλ1
 = 

V3 (C)
V1 (C)

 ,   λ2

 λ1=0

 = 0 ,   λ3

 λ1=0

 = 0 . (15)

Thus, expression (14) with two equations (15) should be integrated to obtain the functions C = C(λ1), λ2 = λ2(λ1),
and λ3 = λ3(λ1), and then it is necessary to find the relation between the time t and the parameter λ1 from (11) at j
= 1. Thus, Eq. (11) transforms into the simple quadrature

t = ∫ 
0

λ1

V1
−1

 [C (ζ)] dζ . (16)

In this case, depending on the form of the functions Vj(C) (j = 1–3), we may separate not only λ1 (in the manner
described above, (15)) but also other parameters (λ2 or λ3) if this will simplify the equations considered.

Common Properties of Solutions of the Dissolution Problem. In the process of dissolution, the concentra-
tion C will monotonically increase with time to the equilibrium value C∗ . This follows from Eq. (2) and the physically
acceptable (in sign) values of the parameters and functions in (2). Likewise, from (11) it follows that the function λj(t)
(j = 1–3) monotonically increases with time. However, two different variants of the behavior of these functions at
t → ∞ are possible: all λj(t) (j = 1–3) tend to infinity or they do not exceed certain ultimate (stationary) values of λj

s.
The first variant is realized if

C
∗
 ≥ C0 + βM111 (F0) . (17)

In this case, the concentration C does not reach the equilibrium value even if the entire substance is dissolved, i.e.,
any stationary concentration Cs falling in the range C 2 [C0, C∗ ] is attained. The undersaturation C∗  − Cs is positive,
and it follows from relations (11) that λj D t at t → ∞. This is also explained by the fact that only at λj → ∞ (j = 1–3)
does the CSDDF calculated by (12) tend to zero (complete dissolution), which follows from the properties of the
CSDDF at larger values of the argument. The value of Cs can be determined from relation (6) at M111(Fs) = 0, i.e.,

Cs = q = C0 + βM111 (F0) . (18)

In the case where inequality (17) has the opposite sign (<) and t → ∞, only a part of the loaded product, with
which the equilibrium concentration Cs = C∗  is attained, is dissolved (the moving force of the process disappears).
This is possible only at any finite values of λj

s (j = 1–3) in the case of material balance (6). In this variant, a nonzero,
steady-state CSDDF is realized:

gs (ζ1, ζ2, ζ3) = g0 (ζ1 + λ1
s
, ζ2 + λ2

s
,  ζ3 + λ3

s) . (19)

It is significant that a steady-state solution of (19) cannot be obtained from the steady-state equations of dissolution
(2) and (3) in the case of a periodic process since at ∂ ⁄ ∂t = 0 and C = C∗  these equations completely degenerate (are
reduced to the identity 0 B 0). Therefore, the quantities λj

s (j = 1–3) should be determined in the process of calcula-
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tion of unsteady equations. We may also use one relation (which is insufficient for the three unknowns λj
s) — the

steady-state form of Eq. (6)

M111 (Fs) = (C∗
 − C0) ⁄ β + M111 (F0) . (20)

In the case of a nonzero steady-state CSDDF, it makes sense to introduce the dissolution efficiency coefficient
µ by the formula, following from (20),

µ = 1 − M111 (Fs) ⁄ M111 (F0) = (C∗
 − C0) ⁄ [βM111 (F0)] . (21)

At Fs = 0, the right side of dependence (21) gives µ = 1 (complete dissolution). From Eq. (2) it follows, in the case
of "calculation" of the moment M111(F) for the positive CSDDF, that dM111

 ⁄ dt < 0, i.e., M111(Fs) ≤ M111(F0). This al-
lows us to suggest that the inequality 0 ≤ µ ≤ 1 is always true. Below are given examples illustrating the conclusions
drawn in this section.

Simplified Form of System (11), (14). The greatest simplifications can be made in the particular case where
the rates of growth of crystal faces are proportional:

V2 = κ2V1 ,   V3 = κ3V1 ,   κ2, κ3 = const . (22)

It should be noted that such a situation is of great practical importance since, as the theoretical and experimental data
show, the rate of growth (dissolution) is proportional or nearly proportional to the oversaturation (undersaturation),
which makes it possible to use the relation V = U(C − C∗ ) (U = const) for the description of the travel of each crystal
face with corrections calculated, if necessary, by the perturbation method. The functional relations between the rate of
growth of crystals and the oversaturation as well as the differences between them and the law V = U(C − C∗ ) have
been considered in [8–11] on the basis of experimental data. The functions Vj(C) proportional to the undersaturation
lead to dependences (22), with which we find two integrals of system (11):

λ2 = κ2λ1 ,   λ3 = κ3λ1 . (23)

On substitution of these expressions into (14), the problem is reduced to the integral relation between the variables C
and λ1:

C (λ1) = q − β∗  ∫ 

W

g0 (ζ1 + λ1, ζ2 + λ2κ2, ζ3 + λ3κ3) dζ1dζ2dζ3 ∏ 

j=1

3

ζj
1 ⁄ αj . (24)

In actual fact, formula (24) gives the functional dependence C(λ1); therefore, the solution of the problem leads to
quadrature (16) relating the parameter λ1 (and consequently, according to (23), the parameters λ2 and λ3) with time.
The analogy between the "three-dimensional" approach involving conditions (22) and the one-dimensional approach
used in [21, 22] has engaged our attention.

Since the form of Eq. (24) is similar to the form of the equation used in the "one-dimensional" description of
the dissolution and only the characteristic variable λ1 is significant for the calculation, the question arises of whether
the dissolution problem considered can be reduced to a one-parameter (with respect to the particle size) problem or,
more precisely, whether the crystal-size distribution density function F can be related to a new CSDDF that would de-
pend only on one variable characterizing the particle size. In certain cases, such reduction of the problem can be done
in an exhausting way. In other cases, this leads to unnatural laws of dissolution of an introduced one-parameter parti-
cle, since in order that the particle size be described by one parameter, the initial shape of the particle (in our case,
the ratio between the parallelepiped sides) must remain practically unchanged in the process of dissolution. However,
a particle shaped as a parallelepiped with finite sizes can disappear at any instant of time, for example, when only one
of the three "coordinates" Xj turns into zero (the particle is shaped as a rectangular plate at the instant it disappears),
i.e., the ratio between the given size and any of the other two sizes is equal to zero, which was not observed at earlier
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instants of time. In this variant, we do not obtain a simple (power) law of the change in the rate of dissolution of a
crystal depending on its equivalent size (introduced in the natural way).

Let us consider an example of the above-described "transformation" of the CSDDF. Let the function g0 have
the form

 g0 (ζ1, ζ2, ζ3) = G0 (ζ1) δ (ζ2 − κ2ζ1) δ (ζ3 − κ3ζ1) , (25)

where δ(z) is the Dirac delta function. This means that at the initial instant of time the size ratios of any particle are
ζ2

 ⁄ ζ1 = κ2 and ζ3
 ⁄ ζ1 = κ3. In the case where equality (22) is fulfilled, from formula (12), derived for solving the

dissolution problem, it follows that these ratios will be retained at any instant of time. It can be shown using expres-
sion (7) that the ratios between different Xj will also be retained in the coordinates Xj (j = 1–3).

It can be verified by direct calculation that the one-dimensional crystal-size distribution density function
G(ζ1, t) satisfies the "one-dimensional" equation

∂G ⁄ ∂t + V1 (C) ∂G ⁄ ∂ζ1 = 0 (26)

at the initial condition

G t=0 = G0 (ζ1) . (27)

However, the variables g and ζj (as well as G and ζ1) play an auxiliary role. It is more important to obtain the main
relations for description of the dissolution problem in the physical variables F and Xj. This can be done using Eq.
(24), which makes it possible to determine the dependence of the rate of dissolution on the coordinate X1. On substi-
tution of (12) into (24) with account for (25) and integration with respect to the variables ζ2 and ζ3, we obtain

C (λ1) = q − β∗  ∏ 

j=1

3

κj
1 ⁄ αj ∫ 

0

∞

ζ1
1 ⁄ α∗  G0 (ζ1 + λ1) dζ1 ,   α∗

−1
 = 

1
3

 ∑ 

j=1

3

αj
−1

 , (28)

where κ1 = 1. This corresponds to the "one-dimensional" variant of dissolution of crystals where the variables X1 and
ζ1 are related by the power law. Comparison of these expressions with an analogous expression for spherical particles
leads to the following relations relating the "three-dimensional" and "one-dimensional" cases of dissolution:

β1 = 
3β

α∗
3α∗

 ∏ 

j=1

3

(αjκj)
1 ⁄ αj ,   

dX1

dt
 = V1 (C∗

 − C) X1
1−α∗  , (29)

here, β1 is the effective shape factor. It is seen from dependences (29) that the dissolution of particles shaped as a
parallelepiped under the above-indicated conditions proceeds in the same way as the dissolution of spherical crystals
with an effective shape parameter β1 and a parameter α∗  in the law of dissolution of crystals.

It is interesting to note that the parameter α∗  is the mean harmonic parameter αj for the three faces of a crys-
tal. We also note that the result obtained is dependent on the special ratios between the crystal sizes selected from a
continual set of possible variants. It is very important here that the characteristic of the three-dimensional system pass
through the origin of the coordinates ζ1, ζ2, ζ3 (X1, X2, X3). In other cases, such simple results are not obtained, even
though it is known [23] that the equations for the moments of the CSDDF in the "three-dimensional" problem on the
crystallization in a kinetic regime of growth of crystals (αj = 1, j = 1–3) can be reduced to a "one-dimensional" mo-
mentum system.

Example. We will exemplify the aforesaid using, as the initial condition, the exponential function

F0 (X1, X2, X3) = f
^
 exp 







−  ∑ 

j=1

3

 Xj
 ⁄ X

^
j







 , (30)
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where f
^
 and X

^
j (j = 1–3) are constants. Our consideration will be restricted to the case of a kinetic regime of dissolu-

tion. It will be assumed that αi = 1 in formula (1) and the functions Vi are linear: Vi = Ui (C∗  − C) and Ui (i = 1–3)
are constants. Having calculated the integrals in (14) (or, more precisely, in (6) since at αj = 1 (j = 1–3) the variables
Xj and ζj are analyzed in the same way), we find

C − C0 = C
^

 [1 − exp (− λ ⁄ r̂)]  , (31)







C
^

 = βf
^
  ∏ 

j=1

3

 X
^

j
2 ;  r̂−1 =  ∑ 

j=1

3

 κj
 ⁄ X

^
j ,  λ = λ1







 . The relation (31) was derived with the use of formulas (22) and (23). It

follows from the proportionality of the rates of dissolution of crystal faces that κ1 = 1, κ2 = U2
 ⁄ U1, and κ3 =

U3
 ⁄ U1. The parameter C

^
 in (31) is equal to βM111(F0) in inequality (17). Let us introduce the dimensionless parame-

ters ϑ  = (C∗  − C0)/C
^

. Inequality (17) corresponds to the case where ϑ  ≥ 1. In any variant (ϑ  < 1, ϑ  > 1), substitution

of (31) into formula (11) at j = 1 and integration of the expression obtained give

λ

r̂
 = ln 





ϑ exp [ (ϑ  − 1) UC
^

t]  − 1

ϑ  − 1




 , (32)

where U = U1. Substituting (32) into formula (31) and the CSDDF into (12) and using (30) and (23), we obtain the
expression for the change in the concentration C with time:

F (X1, X2, X3, t) = 
f
^
 (ϑ  − 1)

ϑ  exp [(ϑ  − 1) UC
^

t]  − 1
 exp 







− ∑ 

j=1

3

Xj
 ⁄ X

^
j







 ,

C − C0

C
^

 = 

ϑ 


exp [ (ϑ  − 1) UC

^
t]  − 1




ϑ  exp [(ϑ − 1) UC
^

t]  − 1

 .

(33)

At ϑ  < 1, for t → ∞ we find from (32) that λs
 ⁄ r̂ = −ln (1 − ϑ). At ϑ  = 1, from (32) it follows in the limit ϑ  → 1 that

λ ⁄ r̂ = ln (1 + UC
^

t). At ϑ  ≥ 1 and t → ∞, from (31) we obtain that Cs = C0 + C
^

.

CONCLUSIONS

1. Equations for description of the process of mass dissolution of crystals shaped as a parallelepiped in the
two-phase medium "liquid–solid phase" have been derived and additional conditions for them have been formulated. A
number of useful consequences of these equations have been obtained.

2. The problem has been reduced to a system of ordinary differential equations supplemented with an integral
relation.

3. An example of solution of the problem is presented.

NOTATION

C∗ , equilibrium concentration; C, current concentration; C0, initial concentration; G, modified crystal-size dis-
tribution density function; G0(ζ1), initial value of G; g, auxiliary crystal-size distribution density function; g0, initial
value of g; t, time; Vj (j = 1–3), undersaturation functions determining the laws of dissolution of crystal faces; X1,
X2, X3, parameters determining the crystal sizes; F(X1, X2, X3, t), crystal-size distribution density function; F0(X1, X2,
X3), initial value of F; Mijk(ψ), moments of the function ψ of the ith, jth, and kth order; N, number of crystals; q,
constant in the law of conservation of substance (6) and in other relations; α, α∗ , parameters of the power law of dis-
solution of spherical particles; αj (j = 1–3), parameters in the power laws of dissolution of crystals shaped as a paral-
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lelepiped; β, shape factor; β∗ , β1, modified shape factors; ζ1, ζ2, and ζ3, auxiliary parameters replacing X1, X2, and
X3; λj(t) (j = 1–3), auxiliary functions. Subscripts: s, steady-state solution; ,̂ constant parameters in the example. 

REFERENCES

1. V. V. Kafarov, I. N. Dorokhov, and E′ . M. Kol’tsova, System Analysis of Chemical Technology Processes.
Processes of Mass Crystallization from Solutions and the Gas Phase [in Russian], Nauka, Moscow (1983).

2. G. A. Aksel’rud and A. D. Molchanov, Dissolution of Solids [in Russian], Khimiya, Moscow (1977).
3. V. F. Frolov, Dissolution of dispersed materials, Teor. Osn. Khim. Tekhnol., 32, No. 4, 398–410 (1998).
4. I. V. Melikhov and B. D. Nebylitsyn, Fluctuations of the crystal shape, in: Crystal Growth [in Russian], Vol.

12, Izd. EGU, Erevan (1977), pp. 108–115.
5. V. N. Men’shov and E. T. Klimenko, Study of mass crystallization of paraffins from solution, Teor. Osn.

Khim. Tekhnol., 21, No. 4, 549–552 (1987).
6. A. I. Moshinskii, Mathematical description of crystallization of crystals with a complex shape, Kolloid. Zh., 52,

No. 4, 710–715 (1990).
7. A. I. Moshinskii, Description of mass growth of crystals from solution with account for disappearance of crys-

tal faces in the process of growth, Prikl. Mekh. Tekh. Fiz., 39, No. 2, 121–134 (1998).
8. P. G. Romankov, N. B. Rashkovskaya, and V. F. Frolov, Mass Transfer Processes of Chemical Technology [in

Russian], Khimiya, Leningrad (1975).
9. S. P. Fedorov, Yu. V. Sharikov, and V. D. Lunev, Mathematical description of the processes of dissolution in

apparatuses of ideal mixing, Zh. Prikl. Khim., 56, No. 5, 1078–1085 (1983).
10. E. M. Vigdorchik and A. B. Sheinin, Mathematical Modeling of Continuous Processes of Dissolution [in Rus-

sian], Khimiya, Leningrad (1971).
11. R. F. Strickland-Constable, Kinetics and Mechanism of Crystallization [Russian translation], Nedra, Leningrad

(1971).
12. A. A. Chernov, E. I. Givargizov, Kh. S. Bagdasarov, et al., Modern Crystallography. Vol 3. Formation of

Crystals [in Russian], Nauka, Moscow (1980).
13. I. V. Melikhov, Crystallization as a mass-transfer process, Teor. Osn. Khim. Tekhnol., 27, No. 2, 142–147

(1993).
14. O. D. Linnikov, Kinetics and mechanism of the growth of crystals of calcium sulfate in the process of its crys-

tallization on a heat-exchange surface, Zh. Prikl. Khim., 69, No. 1, 89–93 (1996).
15. A. I. Moshinskii, Dissolution of a polydisperse system of crystals with allowance for dissolution rate fluctua-

tions, Inzh.-Fiz. Zh., 55, No. 6, 980–98 (1988).
16. A. I. Moshinskii, Some cases of salt crystallization from solutions, Teor. Osn. Khim. Tekhnol., 18, No. 4, 526–

528 (1984).
17. Yu. A. Buevich, V. V. Mansurov, and I. A. Natalukha, Weakly nonlinear oscillations in bulk crystallization,

Inzh.-Fiz. Zh., 49, No. 2, 233–242 (1985).
18. I. V. Melikhov and L. B. Berliner, Kinetics of periodic crystallization in the presence of crystals growing with

fluctuating rates, Teor. Osn. Khim. Tekhnol., 19, No. 2, 158–165 (1985).
19. S. K. Godunov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971).
20. A. I. Moshinskii, Continuous crystallization of substances whose crystals are shaped as a parallelepiped from

solutions, Vysokochist. Vesch., No. 4, 50–57 (1993).
21. Yu. A. Buevich, Kinetics of mass exchange between a polydisperse system of particles and the surrounding me-

dium, Prikl. Mekh. Tekh. Fiz., No. 1, 50–57 (1966).
22. Yu. A. Buevich and G. P. Yasnikov, Kinetics of dissolution of a polydisperse system of particles, Teor. Osn.

Khim. Tekhnol., 16, No. 5, 597–603 (1982).
23. V. D. Lunev and A. I. Moshinskii, Crystallization of substances from solutions at a kinetic law of growth with

allowance for the shape of crystal formations, Khim. Prom., No. 8, 483–490 (1998).

752


